We construct Lipschitz Q-valued functions which approximate carefully integral currents when their cylindrical excess is small and they are almost minimizing in a suitable sense. This result is used in two subsequent works to prove the discreteness of the singular set for the following three classes of 2-dimensional integral currents: area minimizing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area minimizing cones.
Regularity theory for 2-dimensional almost minimal currents i: Lipschitz approximation / DE LELLIS, Camillo; Spadaro, EMANUELE NUNZIO; Spolaor, Luca. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6850. - 370:3(2018), pp. 1783-1801. [10.1090/tran/6995]
Regularity theory for 2-dimensional almost minimal currents i: Lipschitz approximation
Camillo De Lellis;Emanuele Spadaro;
2018
Abstract
We construct Lipschitz Q-valued functions which approximate carefully integral currents when their cylindrical excess is small and they are almost minimizing in a suitable sense. This result is used in two subsequent works to prove the discreteness of the singular set for the following three classes of 2-dimensional integral currents: area minimizing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area minimizing cones.File | Dimensione | Formato | |
---|---|---|---|
DeLellis_Regularity-theory_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
311.27 kB
Formato
Adobe PDF
|
311.27 kB | Adobe PDF | Contatta l'autore |
DeLellis_preprint_Regularity-theory_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
238.18 kB
Formato
Unknown
|
238.18 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.